skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kensicher, Thibault"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Image-guided and robot-assisted surgical procedures are rapidly evolving due to their potential to improve patient management and cost effectiveness. Magnetic Resonance Imaging (MRI) is used for pre-operative planning and is also investigated for real-time intra-operative guidance. A new type of technology is emerging that uses the magnetic field gradients of the MR scanner to maneuver ferromagnetic agents for local delivery of therapeutics. With this approach, MRI is both a sensor and forms a closed-loop controlled entity that behaves as a robot (we refer to them as MRbots). The objective of this paper is to introduce a computational framework for preoperative planning using MRI and modeling of MRbot maneuvering inside tortuous blood vessels. This platform generates a virtual corridor that represents a safety zone inside the vessel that is then used to access the safety of the MRbot maneuvering. In addition, to improve safety we introduce a control that sets speed based on the local curvature of the vessel. The functionality of the framework was then tested on a realistic operational scenario of accessing a neurological lesion, a meningioma. This virtual case study demonstrated the functionality and potential of MRbots as well as revealed two primary challenges: real-time MRI (during propulsion) and the need of very strong gradients for maneuvering small MRbots inside narrow cerebral vessels. Our ongoing research focuses on further developing the computational core, MR tracking methods, and on-line interfacing to the MR scanner. 
    more » « less